
Canonical Launchpad Written Interview

I didn’t have time to write short answers, so I wrote long ones instead.

—Paraphrasing Mark Twain

Education & Career Development

At university, which course of study did you choose, and why?
I studied computer science because I’d loved working with computers from a very early
age. It just took me a while to realize how much. I’d always thought of them as just a
hobby, not something I could actually spend all day engaging with.

For my last two years of high school (upper secondary school), I attended a resi-
dential public magnet school. Unlike a typical school, this school was structured much
like university in that students had a great deal of say over what they studied. I went
with the "pre-medicine" course of study, because at the time I thought I wanted to be-
come a biomedical engineer. At the same time, I also enrolled in an introduction to
programming course because it was mandatory.

It didn’t take me long to realize that, while the biology courses were interesting,
they involved lots of rote memorization and relatively little actual problem solving.
In contrast, the programming course was challenging, engaging, and fun. I quickly
switched to a dual program of biology and computers, and then ultimately made com-
puter science a major and biology a minor. By the time I entered university, I was
solely focused on computer science.

How did you rank competitively in university? Which were your
strongest courses, and which did you enjoy the most?
I was a top student in university. My bachelor’s degree was awarded with distinction,
I maintained a very high GPA throughout graduate school, and I was a member of the
Gamma Beta Phi scholastic honor society.

I always excelled in computer related courses, and I remember particularly enjoy-
ing Operating Systems, Compilers, and Digital Design. In contrast, I did not enjoy
chemistry very much (more rote memorization).

In university or through your career, describe your achievements
that you are particularly proud of.
In my first job, I went from being a testing intern to the main designer and implementer
of the Service Oriented Architecture that the bulk of the company’s multi-million dollar

1



business was based around. This included creating a distributed, fault-tolerant work-
flow system. Not only did this solve customer needs, it provided the basis for the thesis
I submitted to obtain my master’s degree.

While I am very proud of the architecture work I did designing the platform we
used at my second job, I am even more proud of the work I was able to do in the open
source community. I think I helped improve a large number of projects in a variety of
ways (compatibility with different versions and implementations of Python, bug fixes,
documentation improvements, code reviews, etc). With a few key projects, I was able to
become a primary maintainer and add substantial new features, improve performance,
and reduce memory usage.

Characterize your career trajectory and what would you like to achieve
in career and skills development going forward.
Each step seems to involve more and more responsibility. From a technical standpoint,
that’s fine; I love that kind of stuff. Many organizations, however, seem to confuse
technical expertise with human management expertise. That is, if you want to continue
to grow in your technical responsibilities, you also must start having direct reports,
engaging in HR paperwork, and in short becoming a "manager."

I have managed people before. I can do it, but I do not enjoy it. Perhaps that is a
skill I should develop more. Right now, though, I work best when I lead by example,
and when people come to me and ask my opinion, not because they have to because I
outrank them, but because they want to because they respect my work and judgement.

As far as other skills go, I want to be a lifelong learner. I enjoy learning new
things. In particular, I enjoy learning new computer languages and new programming
paradigms.

Experience and Engineering Practices

Describe your level of experience in Python, and how you have at-
tained it.
Python has been one of my favorite languages, and I have many years of experience
with it. This experience began with Python 1.5 in roughly 1999, when I used it to
implement some personal scripts. I think I was inspired by finding some scripts written
in Python on my RedHat Linux installation.

In 2002 and 2003, I used Python 2.2 and 2.3 to implement a build automation
system for the company where I was working. The built-in XML-RPC and Tk libraries
allowed me to produce a desktop GUI to interact with the system as well. (This was the
time before PyPI and pip, so installing dependencies was much more difficult than it is
now, and Python’s "batteries included" philosophy was a major advantage. The other
scripting option at the company was Perl; while Perl’s CPAN package distribution
system made dependency management easier, I wasn’t fond of its sigil-based syntax.)
I continued maintaining and evolving this build system over the course of the next 9
years, but Java was my primary language during this time.

When I moved to a new company in 2011, I made the decision to write our server
software in Python. By that time, Python had split into the Python 2 and Python 3
branches. Python 2.7 was relatively new and contained forward-compatibility features
that were intended to make it easy to eventually port to Python 3. Python 3.2 was the

2



current release of the Python 3 branch at that time, and many dependencies were not
yet available for Python 3, so we stuck to Python 2.7, but with an eye toward porting
to Python 3. (We used many __future__ imports to make this easier; at the time,
unicode_literals was a commonly recommended import and it was only later
that the flaws in this strategy were uncovered.) I now maintain several libraries that
work in both Python 2.7 and various Python 3.x versions, and have assisted in adding
Python 3.x support to some large libraries.

Describe your experience with SQL and relational data modeling,
and summarize your learning with large-scale database backed ap-
plications.
The summary is that I have been a part of teams that have deployed large-scale database
backed applications using Microsoft SQL Server, Oracle Database, and most recently,
PostgreSQL 11 and newer. In the latter two cases, I designed most or all of the database
layer. The lengthy details are below.

I got my start with SQL when working as an intern in the National Weather Ser-
vice’s Operational Support Facility’s (OSF) IT department, prior to joining RiskMet-
rics. One of the things this department was responsible for was tracking all of the
computer hardware and software across the OSF. They did this with a Microsoft Ac-
cess database on a shared disk drive. However, it was reaching the point where it
was becoming cumbersome to use and maintain. I was tasked with porting it to SQL
(specifically, PostgreSQL) and putting a web front end on it (PHP at that point). Even at
this point, I was aware of normalization forms, constraints, foreign keys, and triggers,
and strove to create a normalized database design.

Later at RiskMetrics, I was part of the team that maintained the RiskManager 3
product; this used Microsoft SQL Server 7 or 2000 as the database engine (because
on older version of the product had been a desktop application using the embedded
version of SQL Server). Here I was introduced to stored procedures and the "data ac-
cess object" (DAO) pattern. Later, because of the difficulty of using SQL Server from
Linux, I ported the DAOs to use PostgreSQL, although this never made it to produc-
tion, replaced instead with RiskManager 4, based on the service oriented architecture I
describe next.

Next, when I designed the service oriented architecture that RiskMetrics would be
based on going forward, I was thrilled to find out that we would be able to use Oracle
Database (then version 10g) instead of SQL Server. I borrowed a bookshelf full of
O’Reilly’s Oracle books (they all had orange spines), learned Oracle basics, and set
out to build the core persistence services and libraries. These included the "Object
Service", which other services used to securely store unstructured data (blobs) in a
hierarchical tree similar to a filesystem, and to execute tag-based queries. To support
the security and searching requirements, I created "libACL" and "libFilter," libraries
that the Object Service and many other services used. These consisted of a Java API
as well as database tables and stored procedures (also defining an API); services would
interact with the Java and stored procedure APIs and insert the appropriate foreign
keys to connect tags and ACLs to their primary entity tables. These scaled to tens and
hundreds of millions of rows.

The libFilter library was particularly interesting. It accepted and stored complex
search definitions for tags (grouped and nested AND and OR clauses, with criteria in-
cluding exact match, above, below, including or excluding). To execute the search,

3



libFilter would construct an appropriate SQL query string (using stored procedures)
that the embedding service would join against. The SQL query string was generally
parameterized, instead of embedding literals; however, we did run into cases where the
tag distribution was so skewed that the query plan the database produced worked well
for some users, but very poorly for other users. That was a challenge that was never
fully solved except by forcing the database to generate new query plans.

At NextThought, most of our SQL usage was hidden behind other libraries. This
was either the SQLAlchemy ORM (for analytical usage data) or the RelStorage ZODB
storage backend (for content objects). However, we did do some contract work that re-
quired me to write substantial amounts of SQL and stored procedures for PostgreSQL
11. To give the customer a better chance of maintaining it after the contract was over,
the database schema and procedures were copiously documented using literate pro-
gramming techniques (with Emacs’s Org Babel).

How comprehensive would you say your knowledge of Linux is, from
the kernel up? How have you gained this knowledge?
I’m not sure it’s possible to have a truly comprehensive knowledge of "Linux" in gen-
eral. Even the kernel is so large and has so many capabilities now that having compre-
hensive knowledge of it alone takes a lot of devotion. That said, I have a solid working
knowledge of POSIX, Linux, or Unix-like systems from the perspectives of a user,
sometime administrator, and programmer.

Over the years, I have used, in many cases programmed on, and in some cases
administered, Unix-like systems including various versions of Solaris, HP-UX, Digital
Unix (Ultrix 4.3), NetBSD (1.42), NeXTStep (3.3 and OPENSTEP for Mach up to
4.2), macOS (and its predecessor Mac OS X back to 10.2 and its distant predecessor
Rhapsody Developer Release 2), A/UX 3, and of course Linux.

For many years, my primary computer was a Linux desktop. I initially ran RedHat
Linux (I believe it was 5.2, but I was saddened to discover that I can no longer locate
the CD). I horrified my parents by altering the family computer to dual boot Windows
9x and RedHat.

Later, I grew impatient waiting for official RedHat releases and RPMs of cutting
edge software. I tried maintaining a "/usr/local" hierarchy of software I built myself
from source, but that quickly became overwhelming. Searching for a distribution that
was easy to customize, could teach me more about Linux, and had a faster update cycle,
I landed on Gentoo. Given a choice (and the time!), that’s still the distribution I tend to
use for personal systems.

After about 2005, most professional software I’ve developed has been deployed on
Linux. When in datacenters we manage, that has been either RHEL, Oracle Linux, or
CentOS. I’ve used continuous integration systems to test on various versions of Ubuntu,
and producing wheels for PyPI requires a Fedora-based "manylinux" image.

Some of the software I maintain works closely with kernel interfaces for eventing,
so I’ve been following the development of io_uring with interest. I subscribe to
Linux Weekly News to help me stay informed. I keep much-loved copies of Steven’s
"Advanced Programming in the UNIX Environment" and O’Reilly’s "UNIX Power
Tools" on my bookcase (probably as much out of nostalgia as anything else).

4

https://orgmode.org/worg/org-contrib/babel/intro.html
https://lwn.net


Describe your experience of web front-end development.
In short, I have some, and retain a working knowledge of HTML and CSS, but I am not
very familiar with modern best practices or frameworks. The most recent project I’ve
done where I was the primary web developer was creating the static, bootstrap3, Zope
Page Template, based NextThought Developer Blog.

Prior to that, I worked on the front end of the RiskManager 3 application, which
used JSPs and XMLHTTPRequest. At the time I originally started working on it, it
only supported Microsoft Internet Explorer 6, but I was able to add unofficial support
for Mozilla before moving to a different project.

How do you address software performance, systematically, in your
products and in your software engineering practices?
Good performance starts with good design. The most important optimizations are the
ones that happen at the highest levels. As a simple example, if the API for a web
application requires a round-trip HTTP request to display each row in a table, users
aren’t going to be happy; so instead, you design an API that allows fetching larger
amounts of data at once. Of course there’s a tension there too: what if the data is too
large to fit in memory, or the user is only interested in some subset of it? You answer
those requirements by considering paging and filtering as part of the API.

It’s important to be able to understand how a running system is performing. At a
first pass, it’s often possible to get much of the necessary information from logs, e.g.,
HTTP request logs. However, it is often also important to be able to feed performance
metrics into external systems (such as Graphite or Prometheus) to be able to break
things down at a finer level. You can take a guess about what metrics you’ll need
and include those as you do the initial building, but in my experience, the most crucial
metrics aren’t always obvious and get inserted later to help test performance hypothesis
or look for correlations.

Once you start getting into specific bits of code, there’s the famous saying (at-
tributed to both Knuth and Hoare) that "premature optimization is the root of all evil."
Write it quickly, write it correctly, and, if and when you suspect a problem, the most
important thing you can do is profile the code.

That’s not to say that performance shouldn’t be considered when writing code. This
begins with choosing an appropriate algorithm and data structures, based on what the
code is expected to deal with. Once again, start at the high level ("I need to look items
up by key, so I probably need an associative data structure."), and when and if required,
let profiling and metrics guide further changes ("Looks like the keys and values are all
integers, and there are 20,000,000 of them when I thought there would be 50, and
profiling and system stats shows this code is using so much memory we’re swapping.
Maybe I should use a C data structure like an IIBTree to reduce memory usage?")

How do you prefer to drive documentation for your projects?
There are many types of documentation serving different needs and different audiences.
One breakdown divides documentation into four kinds: Tutorials (learning-oriented),
How-to guides (problem oriented), Explanation (understanding-oriented), and Refer-
ence (information-oriented) (I suspect there are other breakdowns). In most commer-
cial products I’ve worked on, there’s an additional type of documentation, the "require-

5

https://dev.nextthought.com/blog/2017/10/building-a-blog.html
https://btrees.readthedocs.io/en/latest/api.html#BTrees.IIBTree.IIBTree
https://documentation.divio.com


ments" documents; as the product matures, this may become part of the explanation
materials.

I like to use the software itself to create the reference documents; in Python, that
typically means using Sphinx and docstrings. Actually, in general I prefer to keep
documentation as close as possible to the software so it has a slightly lower chance
of going stale. The chances of documents being in a useful state are better if they’re
actually tested, so that means a tool like doctest or its extensions like manuel.

When writing a module, class, or interface, I sometimes write the method signa-
tures and their docstrings before implementing any code. If this is hard, something is
probably wrong with the approach. This is especially true the more exploratory the
code is (that is, if I’m not quite sure the approach I want to take). I’ve even found it
useful to use the process of writing a testable tutorial to guide the design of the external
API; I believe I used this approach when creating nti.webhooks.

How do you approach quality in your work?
As automatically as possible. Coding and testing standards are well and good, but if
there’s not an automatic check enforcing them, quality will suffer over the long run.

Peer reviews are another great help.

Describe a case where it was very difficult to test code you were writ-
ing, but you found a reliable way to do it.
No specific examples are coming to mind. I’m positive I’ve been in a position with
difficult to test code, but if it’s code I am writing, the solution is usually to refactor
something (e.g., move a complicated exception handling block to its own function;
look up a component instead of hardcoding the class to instantiate) or, in the worst
cases, add a testing hook.

Other techniques, especially for code I depend on but am not writing, involve
monkey-patches or mock objects.

If available, provide your public github/gitlab repository links.
• https://github.com/jamadden

If available, provide your personal blog/website links.
• http://seecoresoftware.com

Context

How are you involved in open source software?
As a user, contributor, and in some cases, primary maintainer.

6

https://manuel.readthedocs.io/en/latest/
https://github.com/NextThought/nti.webhooks
https://github.com/jamadden
http://seecoresoftware.com


Describe any significant contributions to open source (with links
where possible).
I have maintained the asynchronous framework gevent since 2015; it receives millions
of downloads a month. During that time, we have added support for PyPy and newer
Python versions, introduced the libuv alternative to the libev event loop with the
intention to move completely to libuv, and substantially improved performance. I
recently became the maintainer of the underlying greenlet library, which is downloaded
even more.

I have maintained the RelStorage ZODB storage since 2016; while not at the scale
of gevent, it is an important part of many large ZODB deployments (including Plone).
During that time, bugs have been fixed, support for newer versions of Python and newer
versions of databases and even new databases have been added, performance has been
dramatically improved, and memory use has been decreased.

I have PyPI release access to 164 projects, mostly in the Zope or ZODB universe;
I’ve made contributions to all of them.

What do you think are the key ingredients of a successful open source
project?
I haven’t studied this, though I’m sure others have. I see a difference between a suc-
cessful open source project and a famous open source project, and there are degrees of
success. A basic level of success is achieved when someone has an itch, scratches it to
their satisfaction, and makes that code available for others to use.

Beyond that, in order to grow the project, you need to form a community. I don’t
know how you initially form this community other than by publicizing what you’ve
done and hope others have the same itch and choose this project to scratch it. Keeping
and growing the community takes a willingness to meet their needs and accept their
contributions (which come in many forms, everything from feature requests and bug
reports to simple typo corrections). Words like "transparency," "inclusiveness", and
"welcoming" all apply to growing the community in the long term. Once you have
a community, it’s important not to just disappear; responsible maintainers arrange for
some sort of transition plan if the community is still interested.

To be famous it helps to have sponsorship, or be the first to define a niche or enter
a new technological realm.

Why do you most want to work for Canonical?
The role I’m applying for seems like a smooth transition from what I’m currently doing.
Because of my previous experience, it seems like I could be useful, and I like being
useful. It’s also been hinted that there are exciting upcoming projects and that might
give me a chance to help build those.

Which other companies are building the sort of products you would
like to work on?
If I were to stick to my Zope experience, I have been contacted by at least two consultant-
type organizations doing work in the area.

7

http://gevent.org/
https://pypistats.org/packages/greenlet
https://relstorage.readthedocs.io/en/latest/
https://pypi.org/user/jamadden/


Who do you think are key competitors to Canonical? How do you
think Canonical should plan to win that race?
I am not a business major, nor do I know much about the business that’s grown up
around Linux (software and services), but I would assume that key competitors are
names I’ve heard of that are also working in that space: RedHat, Oracle, possibly even
IBM.

I’ve always been a fan of the meritocracy system, where you win by being the best,
not by playing fast and loose with the rules.

How does your background and experience make you suitable for
this role in the Launchpad team?
I’ve spent ten years building and deploying a large Zope-based application, supporting
it in production, and scaling it to handle large numbers of users. In addition, I have a
background that includes building large distributed systems.

8


	Education & Career Development
	At university, which course of study did you choose, and why?
	How did you rank competitively in university? Which were your strongest courses, and which did you enjoy the most?
	In university or through your career, describe your achievements that you are particularly proud of.
	Characterize your career trajectory and what would you like to achieve in career and skills development going forward.

	Experience and Engineering Practices
	Describe your level of experience in Python, and how you have attained it.
	Describe your experience with SQL and relational data modeling, and summarize your learning with large-scale database backed applications.
	How comprehensive would you say your knowledge of Linux is, from the kernel up? How have you gained this knowledge?
	Describe your experience of web front-end development.
	How do you address software performance, systematically, in your products and in your software engineering practices?
	How do you prefer to drive documentation for your projects?
	How do you approach quality in your work?
	Describe a case where it was very difficult to test code you were writing, but you found a reliable way to do it.
	If available, provide your public github/gitlab repository links.
	If available, provide your personal blog/website links.

	Context
	How are you involved in open source software?
	Describe any significant contributions to open source (with links where possible).
	What do you think are the key ingredients of a successful open source project?
	Why do you most want to work for Canonical?
	Which other companies are building the sort of products you would like to work on?
	Who do you think are key competitors to Canonical? How do you think Canonical should plan to win that race?
	How does your background and experience make you suitable for this role in the Launchpad team?


